Tag

Sort by:

King graph

The king graph is a graph with vertices in which each vertex represents a square in an chessboard, and each edge corresponds to a legal move by a king.The number of edges in the king graph is , so for , 2, ..., the first few values are 0, 6, 20, 42, 72, 110, ... (OEIS A002943).The order graph has chromatic number for and for . For , 3, ..., the edge chromatic numbers are 3, 8, 8, 8, 8, ....King graphs are implemented in the Wolfram Language as GraphData["King", m, n].All king graphs are Hamiltonian and biconnected. The only regular king graph is the -king graph, which is isomorphic to the tetrahedral graph . The -king graphs are planar only for (with the case corresponding to path graphs) and , some embeddings of which are illustrated above.The -king graph is perfect iff (S. Wagon, pers. comm., Feb. 22, 2013).Closed formulas for the numbers of -cycles of with are given by(1)(2)(3)(4)where the formula for appears in Perepechko and Voropaev.The..

Queen graph

The queen graph is a graph with vertices in which each vertex represents a square in an chessboard, and each edge corresponds to a legal move by a queen. The -queen graphs have nice embeddings, illustrated above. In general, the default embedding with vertices corresponding to squares of the chessboard has degenerate superposed edges, the only nontrivial exception being the -queen graph.Queen graphs are implemented in the Wolfram Language as GraphData["Queen", m, n].The following table summarized some special cases of queen graphs.namecomplete graph tetrahedral graph The following table summarizes some named graph complements of queen graphs.-queen graph-knight graph-queen graph-queen graph-knight graphAll queen graphs are Hamiltonian and biconnected. The only planar and only regular queen graph is the -queen graph, which is isomorphic to the tetrahedral graph .The only perfect queen graphs are , , and .A closed formula..

Snark

A snark is a connected bridgeless cubic graph (i.e., a biconnected cubic graph) with edge chromatic number of four. (By Vizing's theorem, the edge chromatic number of every cubic graph is either three or four, so a snark corresponds to the special case of four.) Snarks are therefore class 2 graphs.In order to avoid trivial cases, snarks are commonly restricted to be connected (so that the graph union of two Petersen graphs is excluded), have girth 5 or more and not to contain three edges whose deletion results in a disconnected graph, each of whose components is nontrivial (Read and Wilson 1998, p. 263).Snarks that are trivial in the above senses are sometimes called "reducible" snarks. A number of reducible snarks are illustrated above.The Petersen graph is the smallest snark, and Tutte conjectured that all snarks have Petersen graph graph minors. This conjecture was proven in 2001 by Robertson, Sanders, Seymour, and Thomas,..

Banana tree

An -banana tree, as defined by Chen et al. (1997), is a graph obtained by connecting one leaf of each of copies of an -star graph with a single root vertex that is distinct from all the stars.Banana trees are graceful (Sethuraman and J. Jesintha2009, Gallian 2018).The -banana tree has rank polynomialPrecomputed properties of a number of banana trees is implemented in the Wolfram Language as GraphData["BananaTree", n, k].

Kayak paddle graph

A kayak paddle graph is the graph obtained by joining cycle graphs and by a path of length (Gallian 2018). is isomorphic to the 3-barbell graph.Kayak paddle graphs are planar, cactus, unit-distance and matchstick graphs. They are also bridged and traceable and have arboricity of 2.Litersky (2011) proved that kayak paddle graphs are gracefulwhen: 1. , , 2. (mod 4) for , 3. , (Litersky 2011, Gallian 2018).

Centipede graph

The -centipede graph, -centipede tree, or simply "-centipede," is the tree on nodes obtained by joining the bottoms of copies of the path graph laid in a row with edges. It is therefore isomorphic to the -firecracker graph, with special cases summarized in the table below.graph1path graph 2path graph 3E graphThe rank polynomial of the centipede is given by

Spider graph

A spider graph, spider tree, or simply "spider," is a tree with one vertex of degree at least 3 and all others with degree at most 2. The numbers of spiders on , 2, ... nodes are 0, 0, 0, 1, 2, 4, 7, 11, 17, 25, 36, 50, 70, 94, ... (OEIS A004250).The count of spider trees with nodes is the same as the number of integer partitions of into three or more parts. It also has closed form(1)where is the partition function P and is the floor function. A generating function for is given by(2)(3)(4)where is a q-Pochhammer symbol.Not all spiders are caterpillar graphs, norare all spiders lobster graphs.

Meredith graph

The Meredith graph is a quartic graph on 70 nodes and 140 edges that is a counterexample to the conjecture that every 4-regular 4-connected graph is Hamiltonian.It is implemented in the Wolfram Languageas GraphData["MeredithGraph"].The Meredith graph has chromatic number 3 andedge chromatic number 5.The plots above show the adjacency, incidence,and distance matrices of the graph.

Kittell graph

The Kittell graph is a planar graph on 23 nodes and 63 edges that tangles the Kempe chains in Kempe's algorithm and thus provides an example of how Kempe's supposed proof of the four-color theorem fails.It is also an identity graph.The Fritsch graph and Soifergraph provide smaller (and in fact the smallest possible) counterexamples.

Chvátal graph

Grünbaum conjectured that for every , , there exists an -regular, -chromatic graph of girth at least . This result is trivial for or , but only a small number of other such graphs are known, including the 12-node Chvátal graph, 21-node Brinkmann graph, and 25-node Grünbaum graph. The Chvátal graph is illustrated above in a couple embeddings (e.g., Bondy; Knuth 2008, p. 39).It has 370 distinct (directed) Hamiltonian cycles, giving a unique generalized LCF notation of order 4 (illustrated above), two of order 6 (illustrated above), and 43 of order 1.The Chvátal graph is implemented in the WolframLanguage as GraphData["ChvatalGraph"].The Chvátal graph is a quartic graph on 12 nodes and 24 edges. It has chromatic number 4, and girth 4. The Chvátal graph has graph spectrum ...

Moser spindle

The Moser spindle is the 7-node unit-distance graph illustrated above (Read and Wilson 1998, p. 187). It is sometimes called the Hajós graph (e.g., Bondy and Murty 2008. p. 358), though this term is perhaps more commonly applied to the Sierpiński sieve graph .It is implemented in the Wolfram Languageas GraphData["MoserSpindle"].A few other (non-unit) embeddings of the Moser spindle are illustrated above.The Moser spindle has chromatic number 4 (as does the Golomb graph), meaning the chromatic number of the plane must be at least four, thus establishing a lower bound on the Hadwiger-Nelson problem. After a more than 50-year gap, the first unit-distance graph raising this bound (the de Grey graph with chromatic number 5) was constructed by de Grey (2018).

Caveman graph

The (connected) caveman graph is a graph arising in social network theory formed by modifying a set of isolated -cliques (or "caves") by removing one edge from each clique and using it to connect to a neighboring clique along a central cycle such that all cliques form a single unbroken loop (Watts 1999). A number of cavemen graphs formed in this manner from are illustrated above.Caveman graphs are perfect.Caveman graphs will are implemented in the Wolfram Language as GraphData["Caveman", n, k].

Helm graph

The helm graph is the graph obtained from an -wheel graph by adjoining a pendant edge at each node of the cycle.Helm graphs are graceful (Gallian 2018), with the odd case of established by Koh et al. 1980 and the even case by Ayel and Favaron (1984). The helm graph is perfect only for and even .Precomputed properties of helm graphs are available in the Wolfram Language using GraphData["Helm", n, k].The -Helm graph has chromatic polynomial, independence polynomial, and matching polynomial given by(1)(2)(3)where . These correspond to recurrence equations (together with for the rank polynomial) of(4)(5)(6)(7)

Pan graph

The -pan graph is the graph obtained by joining a cycle graph to a singleton graph with a bridge. The -pan graph is therefore isomorphic with the -tadpole graph. The special case of the 3-pan graph is sometimes known as the paw graph and the 4-pan graph as the banner graph (ISGCI).Koh et al. (1980) showed that -tadpole graphs are graceful for , 1, or 3 (mod 4) and conjectured that all tadpole graphs are graceful (Gallian 2018). Guo (1994) apparently completed the proof by filling in the missing case in the process of showing that tadpoles are graceful when or 2 (mod 4) (Gallian 2018), thus establishing that pan graphs are graceful.The fact that the -pan graphs, corresponding to -tadpole graphs, are graceful for , 2 (mod 4) follows immediately from adding the label to the "handle" vertex adjacent to the verex with label 0 in a cycle graph labeling.Precomputed properties of pan graphs are available in the Wolfram Language as GraphData["Pan",..

Gear graph

The gear graph, also sometimes known as a bipartite wheel graph (Brandstädt et al. 1987), is a wheel graph with a graph vertex added between each pair of adjacent graph vertices of the outer cycle (Gallian 2018). The gear graph has nodes and edges.Gear graphs are unit-distance and matchstickgraphs, as illustrated in the embeddings shown above.Attractive derived unit-distance graph are produced by taking the vertex sets from the matchstick embeddings and connecting all pairs of vertices separate by a unit distance for , 6, 12, and 18, illustrated above, with the case corresponding to the wheel graph .Ma and Feng (1984) proved that all gear graphs are graceful, and Liu (1996) showed that if two or more vertices are inserted between every pair of vertices of the outer cycle of the wheel, the resulting graph is also graceful (Gallian 2018).Precomputed properties of gear graphs are given in the Wolfram Language by GraphData["Gear",..

Firecracker graph

An -firecracker is a graph obtained by the concatenation of -stars by linking one leaf from each (Chen et al. 1997, Gallian 2007).Firecracker graphs are graceful (Chen et al.1997, Gallian 2018).Precomputed properties of firecrackers are implemented in the Wolfram Language as GraphData["Firecracker", n, k].

Tadpole graph

The -tadpole graph, also called a dragon graph (Truszczyński 1984) or kite graph (Kim and Park 2006), is the graph obtained by joining a cycle graph to a path graph with a bridge.The -tadpole graph is sometimes known as the -pan graph. The particular cases of the - and -tadpole graphs are also known as the paw graph and banner graph, respectively (ISGCI).Precomputed properties of tadpole graphs are available in the Wolfram Language as GraphData["Tadpole", m, n].Koh et al. (1980) showed that -tadpole graphs are graceful for , 1, or 3 (mod 4) and conjectured that all tadpole graphs are graceful (Gallian 2018). Guo (1994) apparently completed the proof by filling in the missing case in the process of showing that tadpoles are graceful when or 2 (mod 4) (Gallian 2018).

Apollonian network

Connecting the centers of touching spheres in a three-dimensional Apollonian gasket by edges given a graph known as the Apollonian network. This process is illustrated above for the case of the planar Apollonian gasket. This network turns out to have some very special properties. In addition to being either deterministic or random, they are simultaneously scale-free, display small-world effects, can be embedded in an Euclidean lattice, and show space filling as well as matching graph properties. These networks describe force chains in granular packings, fragmented porous media, hierarchical road systems, and area-covering electrical supply networks (Andrade et al. 2005). Apollonian networks share many features of neuronal systems, and have been used to study the brain (Pellegrini et al. 2007).The first few two-dimensional Apollonian networks are illustrated above. The order-twonetwork has the connectivity of the Fano plane.Apollonian..

Path graph

The path graph is a tree with two nodes of vertex degree 1, and the other nodes of vertex degree 2. A path graph is therefore a graph that can be drawn so that all of its vertices and edges lie on a single straight line (Gross and Yellen 2006, p. 18).The path graph of length is implemented in the Wolfram Language as PathGraph[Range[n]], and precomputed properties of path graphs are available as GraphData["Path", n]. (Note that the Wolfram Language believes cycle graphs to be path graph, a convention that seems neither standard nor useful.)The path graph is known as the singleton graph and is equivalent to the complete graph and the star graph . is isomorphic to the complete bipartite graph and to .Path graphs are graceful.The path graph has chromatic polynomial, independence polynomial, matching polynomial, and reliability polynomial given by(1)(2)(3)(4)where . These have recurrence equations(5)(6)(7)(8)The line graph of..

Check the price
for your project
we accept
Money back
guarantee
100% quality