Sort by:

A matchstick graph is a simple graph which has a graph embedding that is planar, for which all distances between vertices have unit distance, and which is non-degenerate (so no vertices are coincident, no edges cross or overlap, and no vertices are coincident with edges on which they are not incident).A matchstick graph is therefore both planar and unit-distance, but a planar unit-distance graph may fail to be a matchstick graph if a single embedding cannot be constructed having both properties. Examples include the prism graphs and Moser spindle, with the sole 6-vertex connected planar unit-distance non-matchstick graph being the 3-prism graph . The numbers of connected graphs on , 2, ... vertices that are planar and unit-distance but not matchstick are 0, 0, 0, 0, 0, 1, 13, ... (E. Weisstein, Apr. 30, 2018), where the 7-vertex examples are illustrated above.The numbers of connected matchstick graphs on , 2, ... nodes are 1, 1, 2,..

The triangular snake graph is the graph on vertices with odd defined by starting with the path graph and adding edges for , ..., . The first few are illustrated above, and special cases are summarized in the following table.1singleton graph 3triangle graph 5butterfly graphTriangular snakes are unit-distance and matchstick by construction, perfect. They are graceful when the number of triangles is congruent to 0 or 1 (mod 4) (Moulton 1989, Gallian 2018), which is equivalent to when .

A kayak paddle graph is the graph obtained by joining cycle graphs and by a path of length (Gallian 2018). is isomorphic to the 3-barbell graph.Kayak paddle graphs are planar, cactus, unit-distance and matchstick graphs. They are also bridged and traceable and have arboricity of 2.Litersky (2011) proved that kayak paddle graphs are gracefulwhen: 1. , , 2. (mod 4) for , 3. , (Litersky 2011, Gallian 2018).

A tree is a mathematical structure that can be viewed as either a graph or as a data structure. The two views are equivalent, since a tree data structure contains not only a set of elements, but also connections between elements, giving a tree graph.Trees were first studied by Cayley (1857). McKay maintains a database of trees up to 18 vertices, and Royle maintains one up to 20 vertices.A tree is a set of straight line segments connected at their ends containing no closed loops (cycles). In other words, it is a simple, undirected, connected, acyclic graph (or, equivalently, a connected forest). A tree with nodes has graph edges. Conversely, a connected graph with nodes and edges is a tree. All trees are bipartite graphs (Skiena 1990, p. 213). Trees with no particular node singled out are sometimes called free trees (or unrooted tree), by way of distinguishing them from rooted trees (Skiena 1990, Knuth 1997).The points of connection are known..

The -pan graph is the graph obtained by joining a cycle graph to a singleton graph with a bridge. The -pan graph is therefore isomorphic with the -tadpole graph. The special case of the 3-pan graph is sometimes known as the paw graph and the 4-pan graph as the banner graph (ISGCI).Koh et al. (1980) showed that -tadpole graphs are graceful for , 1, or 3 (mod 4) and conjectured that all tadpole graphs are graceful (Gallian 2018). Guo (1994) apparently completed the proof by filling in the missing case in the process of showing that tadpoles are graceful when or 2 (mod 4) (Gallian 2018), thus establishing that pan graphs are graceful.The fact that the -pan graphs, corresponding to -tadpole graphs, are graceful for , 2 (mod 4) follows immediately from adding the label to the "handle" vertex adjacent to the verex with label 0 in a cycle graph labeling.Precomputed properties of pan graphs are available in the Wolfram Language as GraphData["Pan",..

The gear graph, also sometimes known as a bipartite wheel graph (Brandstädt et al. 1987), is a wheel graph with a graph vertex added between each pair of adjacent graph vertices of the outer cycle (Gallian 2018). The gear graph has nodes and edges.Gear graphs are unit-distance and matchstickgraphs, as illustrated in the embeddings shown above.Attractive derived unit-distance graph are produced by taking the vertex sets from the matchstick embeddings and connecting all pairs of vertices separate by a unit distance for , 6, 12, and 18, illustrated above, with the case corresponding to the wheel graph .Ma and Feng (1984) proved that all gear graphs are graceful, and Liu (1996) showed that if two or more vertices are inserted between every pair of vertices of the outer cycle of the wheel, the resulting graph is also graceful (Gallian 2018).Precomputed properties of gear graphs are given in the Wolfram Language by GraphData["Gear",..

The -ladder graph can be defined as , where is a path graph (Hosoya and Harary 1993; Noy and Ribó 2004, Fig. 1). It is therefore equivalent to the grid graph. The ladder graph is named for its resemblance to a ladder consisting of two rails and rungs between them (though starting immediately at the bottom and finishing at the top with no offset).Hosoya and Harary (1993) also use the term "ladder graph" for the graph Cartesian product , where is the complete graph on two nodes and is the cycle graph on nodes. This class of graph is however more commonly known as a prism graph.Ball and Coxeter (1987, pp. 277-278) use the term "ladder graph" to refer to the graph known in this work as the ladder rung graph.The ladder graph is graceful (Maheo 1980).The chromatic polynomial, independence polynomial, and reliability polynomial of the ladder graph are given by(1)(2)(3)where . Recurrence equations for the chromatic..

The star graph of order , sometimes simply known as an "-star" (Harary 1994, pp. 17-18; Pemmaraju and Skiena 2003, p. 248; Tutte 2005, p. 23), is a tree on nodes with one node having vertex degree and the other having vertex degree 1. The star graph is therefore isomorphic to the complete bipartite graph (Skiena 1990, p. 146).Note that there are two conventions for the indexing for star graphs, with some authors (e.g., Gallian 2007), adopting the convention that denotes the star graph on nodes. is isomorphic to "the" claw graph. A star graph is sometimes termed a "claw" (Hoffman 1960) or a "cherry" (Erdős and Rényi 1963; Harary 1994, p. 17).Star graphs are always graceful. Star graphs can be constructed in the Wolfram Language using StarGraph[n]. Precomputed properties of star graphs are available via GraphData["Star", n].The chromatic..

The path graph is a tree with two nodes of vertex degree 1, and the other nodes of vertex degree 2. A path graph is therefore a graph that can be drawn so that all of its vertices and edges lie on a single straight line (Gross and Yellen 2006, p. 18).The path graph of length is implemented in the Wolfram Language as PathGraph[Range[n]], and precomputed properties of path graphs are available as GraphData["Path", n]. (Note that the Wolfram Language believes cycle graphs to be path graph, a convention that seems neither standard nor useful.)The path graph is known as the singleton graph and is equivalent to the complete graph and the star graph . is isomorphic to the complete bipartite graph and to .Path graphs are graceful.The path graph has chromatic polynomial, independence polynomial, matching polynomial, and reliability polynomial given by(1)(2)(3)(4)where . These have recurrence equations(5)(6)(7)(8)The line graph of..

A two-dimensional grid graph, also known as a rectangular grid graph or two-dimensional lattice graph (e.g., Acharya and Gill 1981), is an lattice graph that is the graph Cartesian product of path graphs on and vertices. The grid graph is sometimes denoted (e.g., Acharya and Gill 1981).Unfortunately, the convention on which index corresponds to width and which to height remains murky. Some authors (e.g., Acharya and Gill 1981) use the same height by width convention applied to matrix dimensioning (which also corresponds to the order in which measurements of a painting on canvas are expressed). The Wolfram Language implementation GridGraph[m, n, ...] also adopts this ordering, returning an embedding in which corresponds to the height and the width. Other sources adopt the width by height convention used to measure paper, room dimensions, and windows (e.g., 8 1/2 inch by 11 inch paper is 8 1/2 inches wide and 11 inches high). Therefore, depending..

Check the price

for your project

for your project

we accept

Money back

guarantee

guarantee

Price calculator

We've got the best prices, check out yourself!