Tag

Sort by:

Pentatope

The pentatope is the simplest regular figure in four dimensions, representing the four-dimensional analog of the solid tetrahedron. It is also called the 5-cell, since it consists of five vertices, or pentachoron. The pentatope is the four-dimensional simplex, and can be viewed as a regular tetrahedron in which a point along the fourth dimension through the center of is chosen so that . The pentatope has Schläfli symbol .It is one of the six regular polychora.The skeleton of the pentatope is isomorphic to the complete graph , known as the pentatope graph.The pentatope is self-dual, has five three-dimensional facets (each the shape of a tetrahedron), 10 ridges (faces), 10 edges, and five vertices. In the above figure, the pentatope is shown projected onto one of the four mutually perpendicular three-spaces within the four-space obtained by dropping one of the four vertex components (R. Towle)...

Butterfly graph

"The" butterfly graph is a name sometimes given to the 5-vertex graph illustrated above. This graph is also known as the "bowtie graph" (West 2000, p. 12) and is the triangular snake graph . The butterfly graph is ungraceful (Horton 2003). It is implemented in the Wolfram Language as GraphData["ButterflyGraph"].A different type of butterfly graph is defined as follows. The -dimensional butterfly graph is a directed graph whose vertices are pairs , where is a binary string of length and is an integer in the range 0 to and with directed edges from vertex to iff is identical to in all bits with the possible exception of the th bit counted from the left.The -dimensional butterfly graph has vertices and edges, and can be generated in the Wolfram Language using ButterflyGraph[n, b] (with )...

Prism graph

A prism graph, denoted , (Gallian 1987), or (Hladnik et al. 2002), and sometimes also called a circular ladder graph and denoted (Gross and Yellen 1999, p. 14), is a graph corresponding to the skeleton of an -prism. Prism graphs are therefore both planar and polyhedral. An -prism graph has nodes and edges, and is equivalent to the generalized Petersen graph . For odd , the -prism is isomorphic to the circulant graph , as can be seen by rotating the inner cycle by and increasing its radius to equal that of the outer cycle in the top embeddings above. In addition, for odd , is isomorphic to , , ..., . is isomorphic to the graph Cartesian product , where is the path graph on two nodes and is the cycle graph on nodes. As a result, it is a unit-distance graph (Horvat and Pisanski 2010).The prism graph is equivalent to the Cayley graph of the dihedral group with respect to the generating set (Biggs 1993, p. 126).The prism graph is the line graph of the complete..

Rook graph

The rook graph (confusingly called the grid by Brouwer et al. 1989, p. 440) and also sometimes known as a lattice graph (e.g., Bouwer) is the graph Cartesian product of complete graphs, which is equivalent to the line graph of the complete bipartite graph . This is the definition adopted for example by Brualdi and Ryser (1991, p. 153), although restricted to the case . This definition corresponds to the connectivity graph of a rook chess piece (which can move any number of spaces in a straight line-either horizontally or vertically, but not diagonally) on an chessboard.The graph has vertices and edges. It is regular of degree , has diameter 3, girth 3 (for ), and chromatic number . It is also perfect (since it is the line graph of a bipartite graph) and vertex-transitive.The rook graph is also isomorphic to the Latin square graph. The vertices of such a graph are defined as the elements of a Latin square of order , with two vertices being adjacent..

Path graph

The path graph is a tree with two nodes of vertex degree 1, and the other nodes of vertex degree 2. A path graph is therefore a graph that can be drawn so that all of its vertices and edges lie on a single straight line (Gross and Yellen 2006, p. 18).The path graph of length is implemented in the Wolfram Language as PathGraph[Range[n]], and precomputed properties of path graphs are available as GraphData["Path", n]. (Note that the Wolfram Language believes cycle graphs to be path graph, a convention that seems neither standard nor useful.)The path graph is known as the singleton graph and is equivalent to the complete graph and the star graph . is isomorphic to the complete bipartite graph and to .Path graphs are graceful.The path graph has chromatic polynomial, independence polynomial, matching polynomial, and reliability polynomial given by(1)(2)(3)(4)where . These have recurrence equations(5)(6)(7)(8)The line graph of..

Check the price
for your project
we accept
Money back
guarantee
100% quality