Sort by:

The -hypercube graph, also called the -cube graph and commonly denoted or , is the graph whose vertices are the symbols , ..., where or 1 and two vertices are adjacent iff the symbols differ in exactly one coordinate.The graph of the -hypercube is given by the graph Cartesian product of path graphs . The -hypercube graph is also isomorphic to the Hasse diagram for the Boolean algebra on elements.The above figures show orthographic projections of some small -hypercube graphs using the first two of each vertex's set of coordinates. Note that above is a projection of the usual cube looking along a space diagonal so that the top and bottom vertices coincide, and hence only seven of the cube's eight vertices are visible. In addition, three of the central edges connect to the upper vertex, while the other three connect to the lower vertex.Hypercube graphs may be computed in the Wolfram Language using the command HypercubeGraph[n], and precomputed properties..

The -ladder graph can be defined as , where is a path graph (Hosoya and Harary 1993; Noy and Ribó 2004, Fig. 1). It is therefore equivalent to the grid graph. The ladder graph is named for its resemblance to a ladder consisting of two rails and rungs between them (though starting immediately at the bottom and finishing at the top with no offset).Hosoya and Harary (1993) also use the term "ladder graph" for the graph Cartesian product , where is the complete graph on two nodes and is the cycle graph on nodes. This class of graph is however more commonly known as a prism graph.Ball and Coxeter (1987, pp. 277-278) use the term "ladder graph" to refer to the graph known in this work as the ladder rung graph.The ladder graph is graceful (Maheo 1980).The chromatic polynomial, independence polynomial, and reliability polynomial of the ladder graph are given by(1)(2)(3)where . Recurrence equations for the chromatic..

The path graph is a tree with two nodes of vertex degree 1, and the other nodes of vertex degree 2. A path graph is therefore a graph that can be drawn so that all of its vertices and edges lie on a single straight line (Gross and Yellen 2006, p. 18).The path graph of length is implemented in the Wolfram Language as PathGraph[Range[n]], and precomputed properties of path graphs are available as GraphData["Path", n]. (Note that the Wolfram Language believes cycle graphs to be path graph, a convention that seems neither standard nor useful.)The path graph is known as the singleton graph and is equivalent to the complete graph and the star graph . is isomorphic to the complete bipartite graph and to .Path graphs are graceful.The path graph has chromatic polynomial, independence polynomial, matching polynomial, and reliability polynomial given by(1)(2)(3)(4)where . These have recurrence equations(5)(6)(7)(8)The line graph of..

A two-dimensional grid graph, also known as a rectangular grid graph or two-dimensional lattice graph (e.g., Acharya and Gill 1981), is an lattice graph that is the graph Cartesian product of path graphs on and vertices. The grid graph is sometimes denoted (e.g., Acharya and Gill 1981).Unfortunately, the convention on which index corresponds to width and which to height remains murky. Some authors (e.g., Acharya and Gill 1981) use the same height by width convention applied to matrix dimensioning (which also corresponds to the order in which measurements of a painting on canvas are expressed). The Wolfram Language implementation GridGraph[m, n, ...] also adopts this ordering, returning an embedding in which corresponds to the height and the width. Other sources adopt the width by height convention used to measure paper, room dimensions, and windows (e.g., 8 1/2 inch by 11 inch paper is 8 1/2 inches wide and 11 inches high). Therefore, depending..

Check the price

for your project

for your project

we accept

Money back

guarantee

guarantee

Price calculator

We've got the best prices, check out yourself!