Tag

Sort by:

Digamma function

Min Max Re Im A special function which is given by the logarithmic derivative of the gamma function (or, depending on the definition, the logarithmic derivative of the factorial).Because of this ambiguity, two different notations are sometimes (but not always) used, with(1)defined as the logarithmic derivative of the gamma function , and(2)defined as the logarithmic derivative of the factorial function. The two are connected by the relationship(3)The th derivative of is called the polygamma function, denoted . The notation(4)is therefore frequently used for the digamma function itself, and Erdélyi et al. (1981) use the notation for . The digamma function is returned by the function PolyGamma[z] or PolyGamma[0, z] in the Wolfram Language, and typeset using the notation .The digamma function arises in simple sums such as(5)(6)where is a Lerch transcendent.Special cases are given by(7)(8)(9)(10)Gauss's digamma theorem states..

Foxtrot series

The "Foxtrot series" is a mathematical sum that appeared in the June 2, 1996 comic strip FoxTrot by Bill Amend (Amend 1998, p. 19; Mitchell 2006/2007). It arose from a convergence testing problem in a calculus book by Anton, but was inadvertently converted into a summation problem on an alleged final exam by the strip's author:(1)The sum can be done using partial fraction decomposition to obtain(2)(3)(4)(5)(OEIS A127198), where and the last sums have been done in terms of the digamma function and symbolically simplified.

Derivative

The derivative of a function represents an infinitesimalchange in the function with respect to one of its variables.The "simple" derivative of a function with respect to a variable is denoted either or(1)often written in-line as . When derivatives are taken with respect to time, they are often denoted using Newton's overdot notation for fluxions,(2)The "d-ism" of Leibniz's eventually won the notation battle against the "dotage" of Newton's fluxion notation (P. Ion, pers. comm., Aug. 18, 2006).When a derivative is taken times, the notation or(3)is used, with(4)etc., the corresponding fluxion notation.When a function depends on more than one variable, a partial derivative(5)can be used to specify the derivative with respect to one or more variables.The derivative of a function with respect to the variable is defined as(6)but may also be calculated more symmetrically as(7)provided the..

Definite integral

A definite integral is an integral(1)with upper and lower limits. If is restricted to lie on the real line, the definite integral is known as a Riemann integral (which is the usual definition encountered in elementary textbooks). However, a general definite integral is taken in the complex plane, resulting in the contour integral(2)with , , and in general being complex numbers and the path of integration from to known as a contour.The first fundamental theorem of calculus allows definite integrals to be computed in terms of indefinite integrals, since if is the indefinite integral for a continuous function , then(3)This result, while taught early in elementary calculus courses, is actually a very deep result connecting the purely algebraic indefinite integral and the purely analytic (or geometric) definite integral. Definite integrals may be evaluated in the Wolfram Language using Integrate[f, x, a, b].The question of which definite..

Limit

The term limit comes about relative to a number of topics from several different branches of mathematics.A sequence of elements in a topological space is said to have limit provided that for each neighborhood of , there exists a natural number so that for all . This very general definition can be specialized in the event that is a metric space, whence one says that a sequence in has limit if for all , there exists a natural number so that(1)for all . In many commonly-encountered scenarios, limits are unique, whereby one says that is the limit of and writes(2)On the other hand, a sequence of elements from an metric space may have several - even infinitely many - different limits provided that is equipped with a topology which fails to be T2. One reads the expression in (1) as "the limit as approaches infinity of is ."The topological notion of convergence can be rewritten to accommodate a wider array of topological spaces by utilizing the language..

Perrin sequence

The integer sequence defined by the recurrence(1)with the initial conditions , , . This recurrence relation is the same as that for the Padovan sequence but with different initial conditions. The first few terms for , 1, ..., are 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, ... (OEIS A001608).The above cartoon (Amend 2005) shows an unconventional sports application of the Perrin sequence (right panel). (The left two panels instead apply the Fibonacci numbers). is the solution of a third-order linear homogeneous recurrence equation having characteristic equation(2)Denoting the roots of this equation by , , and , with the unique real root, the solution is then(3)Here,(4)is the plastic constant , which is also given by the limit(5)The asymptotic behavior of is(6)The first few primes in this sequence are 2, 3, 2, 5, 5, 7, 17, 29, 277, 367, 853, ... (OEIS A074788), which occur for terms , 3, 4, 5, 6, 7, 10, 12, 20, 21, 24, 34, 38, 75, 122, 166, 236, 355, 356, 930, 1042,..

Check the price
for your project
we accept
Money back
guarantee
100% quality