# Tag

Sort by:

### Royle graphs

The Royle graphs are the two unique simple graphs on eight nodes whose sigma polynomials have nonreal roots (Read and Wilson 1998, p. 265). The sigma polynomials of these graphs are given by(1)(2)respectively, each of which has two nonreal roots (and where the members of each pairs are complex conjugates of each other).The Royle graphs are implemented in the Wolfram Language as GraphData["RoyleGraph1"] and GraphData["RoyleGraph2"].The numbers of simple graphs having this property on , 2, ... vertices are 0, 0, 0, 0, 0, 0, 0, 2, 42, ..., with the 42 such graphs on 9 vertices illustrated above.

### Pan graph

The -pan graph is the graph obtained by joining a cycle graph to a singleton graph with a bridge. The -pan graph is therefore isomorphic with the -tadpole graph. The special case of the 3-pan graph is sometimes known as the paw graph and the 4-pan graph as the banner graph (ISGCI).Koh et al. (1980) showed that -tadpole graphs are graceful for , 1, or 3 (mod 4) and conjectured that all tadpole graphs are graceful (Gallian 2018). Guo (1994) apparently completed the proof by filling in the missing case in the process of showing that tadpoles are graceful when or 2 (mod 4) (Gallian 2018), thus establishing that pan graphs are graceful.The fact that the -pan graphs, corresponding to -tadpole graphs, are graceful for , 2 (mod 4) follows immediately from adding the label to the "handle" vertex adjacent to the verex with label 0 in a cycle graph labeling.Precomputed properties of pan graphs are available in the Wolfram Language as GraphData["Pan",..

### Cycle graph

In graph theory, a cycle graph , sometimes simply known as an -cycle (Pemmaraju and Skiena 2003, p. 248), is a graph on nodes containing a single cycle through all nodes. A different sort of cycle graph, here termed a group cycle graph, is a graph which shows cycles of a group as well as the connectivity between the group cycles. Cycle graphs can be generated in the Wolfram Language using CycleGraph[n]. Precomputed properties are available using GraphData["Cycle", n]. A graph may be tested to see if it is a cycle graph using PathGraphQ[g] && Not[AcyclicGraphQ[g]], where the second check is needed since the Wolfram Language believes cycle graphs are also path graphs (a convention which seems nonstandard at best).Special cases include (the triangle graph), (the square graph, also isomorphic to the grid graph ), (isomorphic to the bipartite Kneser graph ), and (isomorphic to the 2-Hadamard graph). The -cycle graph is isomorphic..

### Tur&aacute;n graph

A Turán graph, sometimes called a maximally saturated graph (Zykov 1952, Chao and Novacky 1982), with positive integer parameters and is a type of extremal graph on vertices originally considered by Turán (1941). There are unfortunately two different conventions for the index .In the more standard terminology (and that adopted here), the -Turán graph, sometimes also called a K-graph and variously denoted , (Gross and Yellen 2006, p. 476), (Chao and Novacky 1982), or (Pach and Agarwal 1995, p. 120), is the extremal graph on graph vertices that contains no -clique for (Chao and Novacky 1982; Diestel 1997, p. 149; Bollobás 1998, p. 108). In other words, the Turán graph has the maximum possible number of graph edges of any -vertex graph not containing a complete graph . The Turán graph is also the complete -partite graph on vertices whose partite sets are as nearly equal in..

Check the price